Using ILP to Improve Planning in Hierarchical Reinforcement Learning
نویسندگان
چکیده
Hierarchical reinforcement learning has been proposed as a solution to the problem of scaling up reinforcement learning. The RLTOPs Hierarchical Reinforcement Learning System is an implementation of this proposal which structures an agent’s sensors and actions into various levels of representation and control. Disparity between levels of representation means actions can be misused by the planning algorithm in the system. This paper reports on how ILP was used to bridge these representation gaps and shows empirically how this improved the system’s performance. Also discussed are some of the problems encountered when using an ILP system in what is inherently a noisy and incremental
منابع مشابه
Combining Macro-operators with Control Knowledge
Inductive Logic Programming (ilp) methods have proven to succesfully acquire knowledge in very different learning paradigms, such as supervised and unsupervised learning or relational reinforcement learning. However, very little has been done on General Problem Solving (gps). One of the ilp-based approaches applied to gps is hamlet. This method is able to learn control rules (heuristics) for a ...
متن کاملHierarchical Text Generation and Planning for Strategic Dialogue
End-to-end models for strategic dialogue are challenging to train, because linguistic and strategic aspects are entangled in latent state vectors. We introduce an approach to generating latent representations of dialogue moves, by inducing sentence representations to maximize the likelihood of subsequent sentences and actions. The effect is to decouple much of the semantics of the utterance fro...
متن کاملHierarchical Reinforcement Learning: A Hybrid Approach
In this thesis we investigate the relationships between the symbolic and subsymbolic methods used for controlling agents by artificial intelligence, focusing in particular on methods that learn. In light of the strengths and weaknesses of each approach, we propose a hybridisation of symbolic and subsymbolic methods to capitalise on the best features of each. We implement such a hybrid system, c...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملReinforcement Learning with a Hierarchy of Abstract Models
Reinforcement learning (RL) algorithms have traditionally been thought of as trial and error learning methods that use actual control experience to incrementally improve a control policy. Sutton's DYNA architecture demonstrated that RL algorithms can work as well using simulated experience from an environment model, and that the resulting computation was similar to doing one-step lookahead plan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000